INVESTIGATION OF TEMPERATURE DISTRIBUTION
IN A PIECEWISE-HOMOGENEOUS SEAM WITH
PRESSED-IN HOT FLUID
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Temperature distribution in apiecewise-homogeneous finite:seam exposed to hot fluid and the
effect of inhomogeneity in the permeability and thermal properties of separate zones of a
seam on the redistribution of temperature fields for flat parallel or axial flow of a pressed-
in hot liquid are studied. The differential equations which describe the process of tempera-
ture distribution in accordance with [1] are solved for various initial and boundary conditions.
Exact analytic formulas are obtained which are useful in numerical computations. The prob-
lem under consideration is related to important engineering problems in hydrology, geother-
my, as well as in the development of oil or gas fields [2-4, 5].

It is known that oil-bearing seams are not uniform hydrologically or thermally. The publications
3, 4, 6] and other publications deal with thermal processes in such seams, some of the former being of
approximate nature. In [4, 6] temperature distribution is studied in a semi-infinite seam which consists of
two zones with different, though constant, hydrodynamic and thermal parameters with pressed-in hot fluid
in the case of flat parallel flows.

It is noted that formulas for temperature distribution in a seam were found in [6] either for small or
large values of time,

In view of its practical value the problem considered in {4, 6] is solved here in the case ofthe pressed-
in hot fluid being filtered in a finite seam, that is, of the oil being withdrawn from the seam at a finite dis-
tance from the tunnels,

1. The Flat Parallel Case

Into a finite seam divided into two zones of different permeability and thermal properties let a fluid
be swayed in through a straight-line tunnel, the fluid being of temperature T. The remaining assumptions
are the same as in [6]. The finding of the temperature redistribution of the pressed-in fluid for the two
zones is mathematically equivalent to the solving of the following system of differential equations:
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L is the seam length; [, is the length of the first zone; A;, a; are the coefficients of heat conduction and
temperature conductivity of the zones; Vi is the convection rate; X is the dimension coordinate; T, is the
initial temperature.

The problem (1.1), (1.2) is solved by using the Fourier method with the Duhamel theorem; one ob-
tains
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and 6, are the roots of the transcendental equation

By ctg Byl — 1By ctg By (1 — 1) = h 32— L. (1.4)

In particular, if the initial and boundary conditions are constant, that is, for
u4(0, t):Td us(1,, t)=Fx; uy(z, 0)y=uy(x, 0) = 0,
the solution (1.3) becomes
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Of course, by using (1.5) the computations do not present any special difficulties since the series-converges
rapidly.

2, The Axially Symmetric Case

For this case the hot liquid sways into a circular seam consisting of two concentric zones of different

constant thermal parameters. Then the temperature function u(r, t) satisfies the following differential
equations:
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as well as the initial and boundary conditions
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uy(r, 0)=Fi(r); us(r, 0)=Fy(r),

where

and Q is the expenditure of the pressed-in fluid; C;, pj are the heat capacities and densities of the seam

zones; m is porosity; h is depth; ry, is the hole radius; R p is the radius of the seam profile; R, is the radius
of the zone boundary; r, t are the coordinates,

The solution of the problem (2.1), (2.2) is given by
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In the above Ir(x) and Y¥(x) denote Bessel functions of real argument of the v-th order of the first or second
kind, respectively;
op are the roots of the equation
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In the case of constant boundary conditions,

uyre, y=us u(l, ) =uy;

ul(r, O)=u2(r, 0):0 .
the solution (2.3) assumes a simple form,
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To study the effect of the seam inhomogeneity on the temperature field computations were carried
out using the formula (1.5) for h=10 m; o = 15 & =1;2; A =0.2; 0,5; 1.0; I = 0,53 Tk = (s 0.4,

The following simple asymptotic expansions are then found for the roots of Eq. (1.4):
1 1 1
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- The results of the computations are shown in Figs. 1 and 2. In the case of Tk = 0 (Fig. 1) the changing

of M with‘)\k kept fixed (the curves 1, 2, 3, correspond to the values of A= 1; 0.5; 0.2 respectively) has

a considerable effect on the heat distribution in the seam and, in particular, for high values of time.

A similar tendency can also be observed in the case of Tk = 0.4 (Fig. 2) the only difference being

that now the rate of temperature change as a function of x is lower than for the previous case,

82 = (nm)® + . for 7»:-;—.
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In view of the above it follows that when operating near the front face of the hole as well as in the
case of swaying-in of the hot fluid into the seam it is necessary that the inhomogeneity of the seam as
regards its thermal properties be taken into account,
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